Problem
When the area of a right-angled triangle is $S$, and the diameter of a circle inscribed on the three sides is $d$, find the short side, long side, and hypotenuse of the right-angled triangle. (In the figure below, $AB$ is the short side, $BC$ is the long side, and $CA$ is the hypotenuse.)
岡山県赤磐市佐古.png)
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution
From the figure we can see that
$$AB+BC=CA+d,$$
$$∴ AB+BC-CA=d. —–[1]$$
We also know that
$$S=\frac{1}{2}×AB×BC,$$
$$∴ AB\cdot BC=2S. —–[2]$$
Furthermore, from Heron’s formula, we have
$$S=\frac{1}{2}×\frac{d}{2}×(AB+BC+CA),$$
$$∴ AB+BC+CA=\frac{4S}{d}. —–[3]$$
From [3]-[1], it follows that
$$2CA=\frac{4S}{d}-d=\frac{4S-d^2}{d},$$
$$∴ CA=\frac{4S-d^2}{2d}.$$
Thus, it turns out that
$$AB+BC=CA+d=\frac{4S+d^2}{2d}, —–[4]$$
Moreover, from the Pythagorean theorem, we see that
$$AB^2+BC^2=CA^2,$$
$$(AB-BC)^2=AB^2+BC^2-2AB\cdot BC=CA^2-4S=\frac{16S^2-24Sd^2+d^4}{4d^2},$$
$$∴ AB-BC=-\sqrt{\frac{16S^2-24Sd^2+d^4}{2d}}. —–[5]$$
$(∵ AB<BC)$
From [4]+[5], we have
$$2AB=\frac{4S+d^2-\sqrt{16S^2-24Sd^2+d^4 }}{2d},$$
$$∴ AB=\frac{4S+d^2-\sqrt{16S^2-24Sd^2+d^4}}{4d}.$$
From [4]-[5], we see that
$$2BC=\frac{4S+d^2+\sqrt{16S^2-24Sd^2+d^4}}{2d},$$
$$∴ BC=\frac{4S+d^2+\sqrt{16S^2-24Sd^2+d^4}}{4d}.$$
(Answer) $AB=\frac{4S+d^2-\sqrt{16S^2-24Sd^2+d^4}}{4d},$
$BC=\frac{4S+d^2+\sqrt{16S^2-24Sd^2+d^4}}{4d},$
$CA=\frac{4S-d^2}{2d}.$
Reference
Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.50; pp.310.
One response to “Hachiman Wake Shrine (1890), Sako, Akaiwa City, Okayama Prefecture (08)”
Your arguments should be seen as the rule when it comes to this topic.