The Encyclopedia of Geometry (0185)


Problem
For a quadrilateral $ABCD$, if the bisectors of $∠A$ and $∠C$ intersect on the diagonal $BD$, then the bisectors of $∠B$ and $∠D$ intersect on the diagonal $AC$.

$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

If the intersection point of the bisector of $∠A$ and $∠C$ is $P$ and it is on the diagonal $BD$, then from the angle bisector theorem,

$$AB∶AD=BP∶DP=CB∶CD,$$

$$AB×CD=AD×CB,$$

$$\frac{AB}{CB}=\frac{AD}{CD},$$

$$∴ \ AB∶CB=AD∶CD. \qquad [1]$$

If the intersection point of the bisector of $∠B$ and $AC$ is $Q$,

$$AB∶CB=AQ∶CQ. \qquad [2]$$

From $[1]$ and $[2]$,

$$AD∶CD=AQ∶CQ.$$

Therefore, the line $DQ$ is the bisector of $∠D$.

In other words, the bisector of $∠B$ and $∠D$ intersect at $Q$ on the diagonal $AC$.

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.42.