The Encyclopedia of Geometry (0186)


Problem
In a quadrilateral $ABCD$, when opposite $∠A$ and $∠C$ are equal, the bisectors of another pair of opposite $∠B$ and $∠D$ are parallel to each other.

$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Let $BM$ and $DN$ be the bisectors of $∠B$ and $∠D$, respectively.

For a quadrilateral $ABCD$,

$$∠A+∠B+∠C+∠D=4∠R.$$

However, since $∠A=∠C$,

$$2∠A+∠B+∠D=4∠R. \qquad [1]$$

For $△ABM$,

$$∠A+∠ABM+∠AMB=2∠R,$$

$$∴ \ ∠A+\frac{1}{2}∠B+∠AMB=2∠R, \qquad \left( ∵ ∠ABM=\dfrac{1}{2}∠B \right)$$

$$∴ \ 2∠A+∠B+2∠AMB=4∠R. \qquad [2]$$

From $[1]$ and $[2]$,

$$2∠AMB=∠D,$$

$$∴ ∠AMB=\frac{1}{2} ∠ D. \qquad [3]$$

Since $DN$ is the bisector of $∠D$,

$$∠ADN=\frac{1}{2}∠D. \qquad [4]$$

From $[3]$ and $[4]$,

$$∴ \ BM∥DN.$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.42.