Problem
There is an isosceles trapezoid with a bottom side of $18 \ cm$, lateral sides of $32.8 \ cm$, and a top side of $3.6 \ cm$. Find the diameter of the circle inscribed in the top and lateral sides as shown.
岡山県赤磐市佐古.png)
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution
If you draw the diagram according to the problem statement, it will actually look like the diagram belowis:
岡山県赤磐市佐古.png)
Let the lengths of bottom side $CD$, lateral side $BC \ (=DA)$, and top side $AB$ be $x, y$, and $z$ respectively.
First, it turns out that
$$DE=\frac{x-z}{2}. \qquad [1]$$
By setting $∠ADE=θ$, we find that
$$\cosθ=\frac{DE}{DA}=\frac{(x-z)/2}{y}=\frac{x-z}{2y}. \quad [2]$$
Next, from the figure, the following can be said:
$$BF=\frac{AB}{2}=\frac{z}{2}. \quad [3]$$
And
$$∠OBF=\frac{180-θ}{2}=90°-\frac{θ}{2},$$
$$∴ \ \tan∠OBF=\tan(90°-\frac{θ}{2})=\cot\frac{θ}{2}. \quad [4]$$
From the half-angle formula, we get
$$\tan^2 \frac{θ}{2}=\frac{1-\cosθ}{1+\cosθ}=\frac{1-(x-z)/2y}{1+(x-z)/2y}=\frac{2y-x +z}{2y+x-z},$$
$$∴ \ \tan\frac{θ}{2}=\sqrt{\frac{2y-x+z}{2y+x-z}}. \quad [5]$$
Therefore, from $[4]$ and $[5]$, we know that
$$\tan∠OBF=\frac{1}{\sqrt\frac{2y-x+z}{2y+x-z}}. \quad [6]$$
Also, from the figure and $[3]$, we get the following:
$$\tan∠OBF=\frac{FO}{BF}=\frac{d/2}{z/2}=\frac{d}{z}. \quad [7]$$
From $[6]$ and $[7]$, it turns out that
$$\frac{d}{z}=\frac{1}{\sqrt\frac{2y-x+z}{2y+x-z}},$$
$$∴ \ d=\frac{z}{\sqrt\frac{2y-x+z}{2y+x-z}}. \quad[8]$$
According to the problem statement, $x=18, \ y=32.8,$ and $\ z=3.6$, so by substituting these into $[8]$, we have
$$d=\frac{3.6}{\sqrt\frac{2×32.8-18+3.6}{2×32.8+18-3.6}}=\frac{3.6}{\sqrt{0.64}}=\frac{3.6}{0.8}=4.5.$$
$$ $$
$$ $$
$$ $$
$$Ans.\quad 4.5 \ cm$$
Reference
Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.51; pp.306-307.