-
The Encyclopedia of Geometry (0042)
Problem The sum of two sides of a triangle is greater than the third side, and the difference between the two sides is less than the third side. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0041)
Problem If two sides of one triangle are equal to two sides of another triangle, but the third sides are unequal, the angle opposite the larger side is greater than the angle opposite the smaller side. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0040)
Problem When two sides of one triangle are equal to two sides of another triangle, and the angles between the two sides are unequal, the side facing the larger angle is greater than the side facing the smaller angle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0039)
Problem When the two angles of a triangle are unequal, the side opposite the larger angle is longer than the side opposite the smaller angle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ SolutionIn…
-
The Encyclopedia of Geometry (0038)
Problem When two sides of a triangle are unequal, the angle opposite the longer side is greater than the angle opposite the shorter side. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Suppose…