-
The Encyclopedia of Geometry (0146)
Problem Let $M$ be the midpoint of the base $BC$ of an isosceles triangle $ABC$.When a line passing through $M$ intersects with the side $AB$ at the point $D$ and with the extension of the side $AC$ at the point $E$,$$AB+AC<AD+AE.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0145)
Problem The line segment $BD$ joining the point $B$ of the base of an isosceles triangle $ABC$ with vertex $A$ to any point $D$ on $AC$ is greater than the line segment $DE$ joining the point $D$ to any point $E$ on $BC$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0144)
Problem The two perpendicular lines drawn from the vertex of an isosceles triangle to the bisectors of the base angles are equal in length. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let $D$ and $E$ be the feet…
-
The Encyclopedia of Geometry (0143)
Problem Let the vertex angle $A$ of an isosceles triangle $ABC$ be $120°$. Let $D$ be the foot of the perpendicular line drawn from the vertex angle $A$ to $BC$, and take any point $P$ on $AD$ and connect it to $B$ and $C$. The following inequality holds: $$AP+BP+CP>AB+AC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$…
-
The Encyclopedia of Geometry (0142)
Problem If the bisectors of $∠B$ and $∠C$ of a triangle $ABC$ are equal, then the triangle is isosceles. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If we assume that $∠B>∠C$, then from the problem $0080$,$$BD<CE.$$Similarly, if we…
-
The Encyclopedia of Geometry (0141)
Problem The straight line connecting the intersection of perpendicular lines drawn from both ends of the base of an isosceles triangle to the vertex bisects the apex angle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If the intersection…
-
The Encyclopedia of Geometry (0140)
Problem The medians drawn from both ends of the base of an isosceles triangle to the opposite sides are equal. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution $△DBC$ and $△ECB$ share the side $BC \ (=CB)$, $$DB=EC \qquad…
-
The Encyclopedia of Geometry (0139)
Problem If the bisector of the vertex angle $A$ of a triangle $ABC$ is perpendicular to the base $BC$, then the triangle is an isosceles triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If the intersection point of…
-
The Encyclopedia of Geometry (0138)
Problem In a triangle $ABC$, if $AB=AC$, then $$∠B=∠C.$$ And vice versa. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If we turn $△ABC$ over and make it $△AC’ B’$, $$AB=AC’ \qquad and \qquad AC=AB’, \qquad (∵ \ AB=AC)$$…