Category: (06) midpoints, median lines and center of gravity

  • The Encyclopedia of Geometry (0119)

    Problem There are two fixed points $A$ and $B$, and a moving point $P$ outside the line $AB$. Let $Q$ be the midpoint of $AP$ and $R$ be the midpoint of $BQ$. Then, $PR$ always passes through a fixed point on $AB$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0118)

    Problem If the midpoint of the side $BC$ of $△ABC$ is $D$ and $∠ABD+∠DAC=∠R$, what type of triangle is $△ABC$ ? $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Draw a circle circumscribing $△ABC$, and let $E$ be the…

  • The Encyclopedia of Geometry (0117)

    Problem How many lines are equidistant from the three vertices of $△ABC$ ? $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let $P, \ Q$ and $R$ be the midpoints of $BC, \ CA$ and $AB$, respectively. Every line…

  • The Encyclopedia of Geometry (0116)

    Problem In $△ABC$, extend the median $AM$ so that $MD=BC$. If $∠AMC=60°$, then $$BD⊥BC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Taking the midpoint $E$ of $MD$, $$ME=MB \qquad and \qquad ∠BME=60°.$$ Thus, $△MBE$ is an equilateral triangle,…

  • The Encyclopedia of Geometry (0115)

    Problem In $△ABC$, let $AB>AC$, and take any point $P$ on the median line $AD$. Then, $$AB-AC>PB-PC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If we take a point $E$ on $AB$ so that $AC=AE$, $$AB-AC=AB-AE=EB.$$ Since $AB>AC$…

  • The Encyclopedia of Geometry (0114)

    Problem Two lines $x$ and $y$ intersect at point $O$. On each of these lines are equal-length segments $AB$ and $CD$, and the midpoints of $AC$ and $BD$ are $M$ and $N$, respectively. Then, the line $MN$ has a constant direction regardless of the positions of $AB$ and $CD$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$…

  • The Encyclopedia of Geometry (0113)

    Problem Construct the median $AD$ of $△ABC$, and draw a line parallel to $AD$ from any point $P$ on the side $BC$. Let $Q$ and $R$ be the points where the line intersects with $AB$ and $AC$, or their extensions. Then, the length of $PQ+PR$ is constant regardless of the location of $P$. $$ $$ $$ $$ $\downarrow$…

  • The Encyclopedia of Geometry (0112)

    Problem Let $D, \ E$ and $F$ be the midpoints of the sides $AB, \ BC$ and $CA$ of $△ABC$, respectively. Draw parallel lines in any direction from $D$ and $F$, and let $G$ and $H$ be the points where they intersect with $BC$, respectively. Then, $$BG=EH.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$…

  • The Encyclopedia of Geometry (0111)

    Problem Let $D$ be the midpoint of the side $AB$ of $△ABC$, and the point $E$ be on the side $AC$ so that $AE∶EC=2∶1$. Moreover, let $O$ be the intersection of $CD$ and $BE$. Then, $$BE∶OE=4∶1.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0110)

    Problem If the medians $BE$ and $CF$ of $△ABC$ are extended so that $BE=EG$ and $CF=FH$, then $G, \ A$ and $H$ are collinear. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution For $△AFH$ and $△BFC$, $$∠AFH=∠BFC, \qquad AF=BF,…