Category: (06) midpoints, median lines and center of gravity

  • The Encyclopedia of Geometry (0109)

    Problem The points $B$ and $C$ are on the same side of the line $XY$, and $A$ is on the opposite side. When the sum of the distances from $B$ and $C$ to $XY$ is equal to the distance from $A$ to $XY$,   $XY$ passes through the center of gravity of $△ABC$. $$ $$ $$ $$ $\downarrow$…

  • The Encyclopedia of Geometry (0108)

    Problem If the feet of perpendicular lines drawn from vertices $A, \ B$, and $C$ to any line $XY$ passing through the center of gravity $G$ of $△ABC$ are $P, \ Q$, and $R$ respectively, then $$AP=BQ+CR.$$ However, $A$ is on the opposite side of $XY$ from $B$ and $C$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$…

  • The Encyclopedia of Geometry (0107)

    Problem The sum of the lengths of the perpendicular lines $AL, \ BM$, and $CN$ drawn from the vertices of $△ABC$ to a line outside the triangle is equal to three times the length of the perpendicular line $GP$ drawn from the center of gravity $G$ of the triangle to the line outside the triangle.…

  • The Encyclopedia of Geometry (0106)

    Problem Take the points $E$ and $F$ on the sides $AB$ and $AC$ of $△ABC$ respectively, and $BE$ and $CF$ intersect at $G$. If $2GE=GB$ and $2GF=GC$,  then $G$ is the center of gravity of $△ABC$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0105)

    Problem In $△ABC$, let the two medians be $BE$ and $CF$.   If $AB>AC$, then $$BE>CF.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let the other median be $AD$, and the center of gravity of $△ABC$ be $G$. $△ABD$…

  • The Encyclopedia of Geometry (0104)

    Problem The medians of the three sides of a triangle intersect at a point located $\frac{2}{3}$ of the way from each vertex. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let the three medians of $△ABC$ be $AM, \…

  • The Encyclopedia of Geometry (0103)

    Problem In $△ABC$, let $D$ be the midpoint of $AB$. Then, the length of the line segment connecting $D$ and the midpoint $E$ of $AC$ is $\frac{1}{2} BC$. State the converse of this theorem and determine the conditions for it to hold. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0102)

    Problem Let $D$ be the midpoint of the side $AB$ of $△ABC$. If a circle with radius $\frac{1}{2} BC$ centered on $D$ is drawn, prove that it intersects with $AC$ at one or two points, and determine the conditions for there to be only one point of intersection. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$…

  • The Encyclopedia of Geometry (0101)

    Problem Is the following statement correct ?   Let the line passing through the midpoint $M$ of the side $AB$ of $△ABC$ intersect with the point $N$ on the side $AC$. In this case, if $MN=\frac{1}{2} BC$, then $$MN∥BC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0100)

    Problem In $△ABC$, suppose $AB>AC$. Then, if we draw the median line $AD$, $$∠BAD<∠CAD.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let $E$ be the intersection point of the line parallel to $AC$ that passes through $B$ and…