Category: 2. triangles

  • The Encyclopedia of Geometry (0128)

    Problem Let $D$ be the foot of the perpendicular line drawn from the right-angled vertex $A$ of a rectangular triangle $ABC$ to the hypotenuse $BC$. Then, the sum of the diameters of the inscribed circles of $△ABC, \ △ABD$ and $△ACD$ is equal to twice the length of $AD$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$…

  • The Encyclopedia of Geometry (0127)

    Problem In a right triangle $ABC$, $$∠A=∠R.$$Let $D$ be the foot of the perpendicular line drawn from $A$ to $BC$, $E$ be the point where the bisector of $∠B$ intersects $AC$, $F$ be the foot of the perpendicular line drawn from $E$ to $BC$, and $G$ be the point of intersection of $AD$ and $BE$.…

  • The Encyclopedia of Geometry (0126)

    Problem Let $H$ be the foot of the perpendicular line drawn from the right-angled vertex $A$ of a triangle $ABC$ to $BC$. Inscribe squares, of which the two sides touch $AH$ and $BC$, in each of $△ABH$ and $△ACH$. Then, the sum of the length of one side of one square and that of the…

  • The Encyclopedia of Geometry (0125)

    Problem Take a point $D$ on the extension of the side $AB$ of a triangle $ABC$ such that $AB=BD$, and let $E$ be the point closest to $B$ of the two that divide $BC$ into thirds. Then, if $AE=\frac{1}{3} CD$, $△ABC$ is a right triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0124)

    Problem If $D$ is the foot of the perpendicular line drawn from the right-angled vertex $A$ of a rectangular triangle $ABC$ to the hypotenuse $BC$, then$$AD+BC>AB+AC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Take a point $E$ on…

  • The Encyclopedia of Geometry (0123)

    Problem If $D$ is the intersection point of the bisector of the right-angled vertex $A$ of a rectangular triangle $ABC$ and the line that passes through the midpoint $M$ of the hypotenuse $BC$ and is perpendicular to $BC$, then $$MA=MD.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

  • The Encyclopedia of Geometry (0122)

    Problem If you drop a perpendicular line $AD$ from the right-angled vertex $A$ of a rectangular triangle $ABC$ to the side $BC$, $$∠C=∠BAD \qquad and \qquad ∠B=∠CAD.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution $△ABC$ and $△DBA$ share…

  • The Encyclopedia of Geometry (0121)

    Problem In a triangle $ABC$ with right angle $∠B$, when $∠C=60°$ and $∠A=30°$, the hypotenuse $AC$ is twice the length of the side $BC$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Extend $CB$ and take point $D$ such…

  • The Encyclopedia of Geometry (0120)

    Problem If the vertex of the right angle of a right triangle $ABC$ is $C$ and the midpoint of the hypotenuse $AB$ is $D$, then $$CD=\frac{1}{2} AB.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If we extend $CD$…

  • The Encyclopedia of Geometry (0119)

    Problem There are two fixed points $A$ and $B$, and a moving point $P$ outside the line $AB$. Let $Q$ be the midpoint of $AP$ and $R$ be the midpoint of $BQ$. Then, $PR$ always passes through a fixed point on $AB$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…