-
The Encyclopedia of Geometry (0150)
Problem Let $Q$ and $R$ be the points where the perpendicular line passing through any point $P$ on the base $BC$ of an isosceles triangle $ABC$ with vertex $A$ intersects with the sides $AB$ and $AC$ (or their extensions), respectively. Then, if $PQ+PR$ is always equal to the side $BC$, $$∠A=∠R.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$…
-
The Encyclopedia of Geometry (0149)
Problem If the sum of perpendicular lines $PD$ and $PF$ drawn from any point $P$ on one side of an isosceles triangle $ABC$ with vertex $A$ to the other two sides is equal to the height $AH$, then $△ABC$ is an equilateral triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0148)
Problem Extend the side $AB$ of an isosceles triangle $ABC$ with $A$ as the vertex, take a point $D$ such that $AB=BD$, and let $E$ be the midpoint of $AB$, then $$CD=2CE.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0147)
Problem If two triangles $ABC$ and $DBC$ have a common base $BC$, and $AD$ is parallel to $BC$, and $△ABC$ is an isosceles triangle, then the perimeter of $△ABC$ is less than that of $△DBC$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0146)
Problem Let $M$ be the midpoint of the base $BC$ of an isosceles triangle $ABC$.When a line passing through $M$ intersects with the side $AB$ at the point $D$ and with the extension of the side $AC$ at the point $E$,$$AB+AC<AD+AE.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0145)
Problem The line segment $BD$ joining the point $B$ of the base of an isosceles triangle $ABC$ with vertex $A$ to any point $D$ on $AC$ is greater than the line segment $DE$ joining the point $D$ to any point $E$ on $BC$. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0144)
Problem The two perpendicular lines drawn from the vertex of an isosceles triangle to the bisectors of the base angles are equal in length. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let $D$ and $E$ be the feet…
-
The Encyclopedia of Geometry (0143)
Problem Let the vertex angle $A$ of an isosceles triangle $ABC$ be $120°$. Let $D$ be the foot of the perpendicular line drawn from the vertex angle $A$ to $BC$, and take any point $P$ on $AD$ and connect it to $B$ and $C$. The following inequality holds: $$AP+BP+CP>AB+AC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$…
-
The Encyclopedia of Geometry (0142)
Problem If the bisectors of $∠B$ and $∠C$ of a triangle $ABC$ are equal, then the triangle is isosceles. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If we assume that $∠B>∠C$, then from the problem $0080$,$$BD<CE.$$Similarly, if we…
-
The Encyclopedia of Geometry (0141)
Problem The straight line connecting the intersection of perpendicular lines drawn from both ends of the base of an isosceles triangle to the vertex bisects the apex angle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution If the intersection…
