-
Katayama-hiko Shrine (1873), Osafune-cho, Setouchi City, Okayama Prefecture (11)
Problem As shown in the figure, two large circles and two small circles are inscribed in a square, separated by oblique lines. If the diameter of the large circle is $1 \ inch$, what is the diameter of the small circle? $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0090)
Problem Let $E$ and $F$ be the feet of the perpendiculars drawn from both ends $B$ and $C$ of the base to the bisector of the apex angle $∠A$ of $△ABC$, and let $G$ be the midpoint of $BC$. Then, $△GEF$ is an isosceles triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0089)
Problem Suppose that the side $AB$ of $△ABC$ is one third of the side $AC$. Drop the perpendicular line $CF$ from $C$ to the bisector $AD$ of $∠A$. Then, $$AD=DF.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let…
-
The Encyclopedia of Geometry (0088)
Problem If we take any point $P$ on the bisector of the exterior angle of $∠A$ of $△ABC$, we get $$PB+PC>AB+AC.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Take the point $D$ on the extension of $BA$ so…
-
The Encyclopedia of Geometry (0087)
Problem Take any point $D$ on the side $AB$ of $△ABC$, and any point $F$ on the extension of $AC$. Connecting $D$ and $F$, let $N$ be the intersection of the bisectors of $∠ADF$ and $∠ABC$, and let $M$ be the intersection of the bisectors of $∠AFD$ and $∠ACB$. Then, $$∠BND=∠CMF.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$…
-
The Encyclopedia of Geometry (0086)
Problem In a triangle $ABC$, let $D$ be the intersection of the bisector of $∠A$ and the perpendicular bisector of the side $BC$. When we draw the perpendiculars $DX$ and $DY$ from $D$ to the sides $AB$ and $AC$ or their extensions, $$AX=AY \qquad and \qquad BX=CY.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$…
-
The Encyclopedia of Geometry (0085)
Problem In a triangle $ABC$, let $X$ be the point where the bisector of $∠C$ intersects the side $AB$. Let $Y$ and $Z$ be the points where a straight line drawn parallel to the side $AC$ through $X$ intersects the side $BC$ and the bisector of the exterior angle of $∠C$, respectively. Then $$XY=YZ.$$ $$ $$…
-
Katayama-hiko Shrine (1873), Osafune-cho, Setouchi City, Okayama Prefecture (10)
Problem As shown in the figure, there are three equal circles inside the outer circle. If the diameter of the outer circle is $10 \ inches$, what is the diameter of the equal circle? $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…
-
The Encyclopedia of Geometry (0084)
Problem In a triangle $ABC$ such that $∠B=3∠C$, if $BD$ is the perpendicular drawn from $B$ to the bisector of $∠A$, then $$BD=\frac{1}{2} (AC-AB).$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Let $E$ be the point where the…
-
The Encyclopedia of Geometry (0083)
Problem Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$, and let $E$ and $F$ be the points where the bisectors of $∠ADB$ and $∠ADC$ intersect the sides $AB$ and $AC$, respectively. Then $$EF<BE+CF.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…