Sangaku Quest

    • Advertisings
Illustration of a bird flying.
  • The Encyclopedia of Geometry (0180)

    Problem The perimeter of a quadrilateral is greater than the sum of its diagonals but less than twice the sum. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution For $△ABC$ and $△ACD$, $$AC<AB+BC,$$ $$AC<CD+DA,$$ $$BD<BC+CD,$$ $$BD<AB+DA,$$ $$∴ \ 2(AC+BD)<2(AB+BC+CD+DA),$$…

    February 7, 2025
  • The Encyclopedia of Geometry (0179)

    Problem The sum of the interior angles of a quadrilateral is equal to four right angles. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution As shown in the diagram above, if you draw a diagonal $AC$ on a quadrilateral…

    February 1, 2025
  • The Encyclopedia of Geometry (0178)

    Problem There is a circle inside a triangle. Prove that the perimeter of the triangle is greater than that of the circle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution Create a triangle $A’B’C’$ that circumscribes the circle at…

    January 28, 2025
  • The Encyclopedia of Geometry (0177)

    Problem Let $O$ be any point inside a triangle $ABC$, and the midpoints of $AO, \ BO$ and $CO$ be $L, \ M$ and $N$ respectively. Furthermore, if the midpoints of $BC, \ CA$ and $AB$ are $D, \ E$ and $F$ respectively, then the lines $DL, \ EM$ and $FN$ intersect at one point.…

    January 23, 2025
  • Asuhayama Shrine (1875b), Ibara-cho, Ibara City, Okayama Prefecture (03)

    Problem As shown in the figure, two regular pentagons, one large and one small, are placed on a line, adjacent to each other.When you know the area of ​​an isosceles triangle in which base is one side of the larger regular pentagon and the angle of its vertex, find the lengths of the sides of…

    January 19, 2025
  • The Encyclopedia of Geometry (0176)

    Problem Let the midpoints of sides $BC, \ CA$ and $AB$ of a triangle $ABC$ be $D, \ E$ and $F$, respectively. Also, let $G$ and $H$ be the feet of perpendiculars drawn from $B$ and $C$ to any line passing through $A$, respectively, and $I$ be the intersection point of $EH$ and $FG$, or…

    January 14, 2025
  • The Encyclopedia of Geometry (0175)

    Problem In a triangle $ABC$, suppose $AC>AB$. Let $D$ be a point on $CA$ such that $CD=AB$, $E$ be the midpoint of $AD$, $F$ be the midpoint of $BC$, and $G$ be the point where the extension of $FE$ intersects with the extension of $BA$, then $$AE=AG.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$…

    January 9, 2025
  • The Encyclopedia of Geometry (0174)

    Problem There are two lines that intersect at a point $Q$. Now, on one of the lines, take three points $A, \ B$, and $C$ such that $QA=AB=BC$, and on the other line, take three points $L, \ M$, and $N$ such that $LQ=QM=MN$. Then, the three lines $AL, \ BN$, and $CM$ intersect at…

    January 5, 2025
  • The Encyclopedia of Geometry (0173)

    Problem In a triangle $ABC$, let $AC>AB$. Let the perpendicular line from $B$ to $AC$ be $BH$. Let the perpendicular lines from a point $P$ on $BC$ to $AB$ and $AC$ be $PE$ and $PD$, respectively. Then $$PD+PE>BH.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

    December 31, 2024
  • The Encyclopedia of Geometry (0172)

    Problem There are two half lines $OX$ and $OY$ starting at $O$. Let a point $P$ be within $∠XOY$ and the feet of perpendicular lines drawn from it to $OX$ and $OY$ be $Q$ and $S$, respectively. Then, if the difference between $PS$ and $PQ$ is a constant $m$, then the point $P$ is always…

    December 27, 2024
←Previous Page
1 2 3 4 5 6 … 27
Next Page→

Sangaku Quest

Proudly powered by WordPress