Sangaku Quest

    • Advertisings
Illustration of a bird flying.
  • The Encyclopedia of Geometry (0162)

    Problem If each side of a triangle $ABC$ is used as base and equilateral triangles $BCD, \ CAE$ and $ABF$ are constructed outside the triangle, then the lengths of line segments $AD, \ BE$ and $CF$ are equal. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

    November 21, 2024
  • The Encyclopedia of Geometry (0161)

    Problem If equilateral triangles $BCX$ and $CDY$, with the bases $BC$ and $CD$ of a parallelogram $ABCD$, are drawn outside the quadrilateral, then $△AXY$ becomes an equilateral triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution For $△ABX$ and…

    November 18, 2024
  • The Encyclopedia of Geometry (0160_2)

    Problem If we take a point $C$ on the extension of a line segment $AB$ (or $BA$) and construct equilateral triangles $ACP$ and $BCQ$ on $AC$ and $BC$, the absolute value of the difference of their heights is constant. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

    November 16, 2024
  • Asuhayama Shrine (1875b), Ibara-cho, Ibara City, Okayama Prefecture (01)

    Asuhayama Shrine is located 750 $m$ north of Ibara Station on the Ibara Line of the Ibara Railway.   Problem As shown in the figure, the side $BC$ is one side of a regular pentagon, which has a diagonal $DF$. When we know the lengths of sides $AB$ and $AC$ and the angle $∠A$, find…

    November 14, 2024
  • The Encyclopedia of Geometry (0160)

    Problem Divide the line segment $AB$ at $C$ and construct equilateral triangles $ACP$ and $BCQ$ on $AC$ and $BC$. Then, the sum of the heights of the two triangles is constant. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution…

    November 11, 2024
  • The Encyclopedia of Geometry (0159)

    Problem $O$ is a point in an equilateral triangle $ABC$. If $∠BAO>∠CAO$, then $$∠BCO>∠CBO.$$ $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution   $△ABO$ and $△ACO$ share the side $AO$,$$AB=AC \qquad and \qquad ∠BAO>∠CAO,$$$$∴ \ BO>CO,$$$$∴ \ ∠BCO>∠CBO.$$ $…

    November 9, 2024
  • The Encyclopedia of Geometry (0158)

    Problem Take three points $D, \ E$ and $F$ on each side of a triangle $ABC$ such that $AD=BE=CF$. Then, if the triangle $DEF$ is an equilateral triangle, $△ABC$ is also an equilateral triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$…

    November 5, 2024
  • The Encyclopedia of Geometry (0157)

    Problem If there are three points $D, \ E$ and $F$ on each side of an equilateral triangle $ABC$ such that $AD=BE=CF$, then the triangle $DEF$ is also an equilateral triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Solution…

    November 3, 2024
  • The Encyclopedia of Geometry (0156)

    Problem Let $DE$ and $DF$ be the perpendicular lines drawn from any point $D$ on the hypotenuse $BC$ of a right isosceles triangle $ABC$ to the sides $AB$ and $AC$, respectively, and let $M$ be the midpoint of BC. Then $△EMF$ is also an isosceles right triangle. $$ $$ $$ $$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $$ $$…

    October 31, 2024
  • The Encyclopedia of Geometry (0155)

    Problem Of the two points of intersection between the two lines that trisect $∠B$ of an isosceles triangle $ABC$ and the perpendicular line $AD$ drawn from the vertex $A$ to the base $BC$, the one closer to $A$ is called $M$ and the other is called $N$. If the intersection point of the line $CN$…

    October 27, 2024
←Previous Page
1 … 4 5 6 7 8 … 27
Next Page→

Sangaku Quest

Proudly powered by WordPress